

Mechanical suspension.

Tough performer - economical in operation.

Proven BPW technology. At home anywhere.

we think transport

The aim of the BPW Group is to provide the best possible support to our customers in the transport and logistics industry. That's why we place the utmost importance in a steadfast orientation towards the needs of the customer. This includes listening to you, ensuring that our solutions meet your individual requirements, and being there for you whatever the situation. For us at BPW, this cooperative aspiration means we think transport

Five brands - one robust partner.

The BPW Leat suspension is right at home where the conditions become a challenge and when the nearest workshop is well out of reach. This is because the VB suspension unit has been designed for difficult road conditions, while any necessary repairs are quick and straightforward. Moreover, the latest generation features an optimised bearing for the connecting rods as well as wear-resistant and durable
spring slides. What is more, the use of proven technology from the series-production BPW air suspension has further simplified installation and in particular the track adjustment. Finally, the precise tracking as well as optimum positioning of connecting rods ensure reduced tyre wear and thus greater operating efficiency.

Your advantages at a glance:

) Lower tyre wear thanks to precise tracking and optimum positioning of connecting rods
> longer product life through an optimised bearing for connecting rods

》 fewer spare parts thanks to greater availability of identical parts from other series
, high level of parts availability through more than 3,200 service partners
, greater efficiency in the production process through a flexible and homogenous product program

》 clear differentiation from counterfeits thanks to the embossed BPW Logo
, improved track adjustment through technology from the proven and series-production BPW air suspension
, standard integrated screw torsion protection on the equalising beam and Connecting rod bearings
) embossed installation information
, easily accessible screw connections
, Wear-resistant, replaceable one-piece spring slides
, also possible is top-mounted suspension for low ride height at maximum ground clearance
, Spring design that is attuned and optimised to the field of application

Operating efficiency
for heavy duty work in the 9-12 t range.

BPW axle assemblies, VB Series.

Axle loads of $9,000 \mathrm{~kg}$ to $12,000 \mathrm{~kg}$.

OUR SOLUTIONS FOR YOU:

》 for axle loads from nine to twelve tonnes
, for use with one to three axles
) available with parabolic springs or multi-leaf springs
) galvanisable supports
, static axle load compensation through equalising beams
, equalising beams with maintenance-free rubber-steel bushes or greasable bronze bushes available

																		(FH) (mm)				
												Wheel	nection			with multi-	Rude heigh	with paral	sic spring	Susp	sion unit weig	ight ((kg)
Type"	$\begin{aligned} & \text { Single } \\ & \text { axle } \end{aligned}$	Tandem-axle suspension	Triaxle unit	Axle beam	$\begin{aligned} & \text { S-cam } \\ & \text { brake } \end{aligned}$	$\begin{aligned} & \text { Track } \\ & \text { (SP) } \end{aligned}$ (mm)	Spring centre (FM) (mm)	Brake chamber bracket centre (GM) (mm)	Example tyre ${ }^{2)}$ (mm)	M = Centre-to-centre distance. ET = Offset	Overall width across the tyres (mm)	Wheel studs	OH/K(mm)	Wheel- base (RS) (mm)	Support version	Loaded ${ }^{3}$	Unloaded	Loaded ${ }^{3}$	Unloaded	Single axle	Tademaxle suspension	Tri-axle suspension
HSFVB	9.010	219.010	---	120	SN 4218	2.040	1.300	525	385165 R22,5	ETo	2.435	$10 \times$ M22x1,5	280,8/335	1.310	niedrig	---	---	232	256	427	896	---
HSFVB	9.010	219.010	319.010	120	SN 4218	2.040	1.300	525	385165 R22,5	eto	2.435	$10 \times$ M22x1, 5	280,8/335	1.310	mittel	---	---	268	292	430	891	1.353
HSFVB	9.010	219.010	319.010	120	SN 4218	2.040	1.300	525	385165 R22,5	eto	2.435	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	1.360	mittel	337	379	---	---	489	1.009	1.530
HSFVB	9.010	219.010	319.010	120	SN 4218	2.040	1.300	525	385165 R22,5	Eto	2.435	$10 \times$ M22x1, 5	280,8/335	1.360	hoch	367	409	---	---	494	1.015	1.536
HSFVB	9.010	219.010	319.010	120	SN 4218	2.010	1.200	495	385/65 R22,5	Eto	2.405	$10 \times 122 \times 1,5$	280,8/335	1.360	hoch	367	409	---	---	493	1.013	1.533
HzFVB	9.010	219.010	319.010	120	SN 4218	1.820	900	335	275/70 R22,5	M = 320	2.432	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	1.360	hoch	367	409	---	---	491	1.009	1.527
NHzFVB	12.010	2112.010	---	120	SN 3020	1.830	980	239	245170 R17,5	M $=290$	2.365	$10 \times \mathrm{M} 22 \times 1,5$	175,8/225	1.310	niedrig	---	---	232	256	429	900	---
NHZFVB	12.010	2112.010	3/12.010	120	SN 3020	1.950	1.100	243	$245170 \mathrm{R17,5}$	M $=290$	2.485	$10 \times$ M22x1,5	175,8/225	1.310	mittel	---	---	268	292	445	921	1.368
HSFVB	12.010	2112.010	3112.010	150	SN 4220	2.040	1.300	365	4451/6 R22,5	Eto	2.505	$10 \times$ M22x1,5	280,8/335	1.310	hoch	---	---	313	337	502	1.031	1.560
HSFVB	12.010	2112.010	3112.010	150	SN 4220	2.040	1.300	365	445165 R22,5	Eto	2.505	$10 \times$ M22x1, 5	280,8/335	1.360	hoch	---	---	388	412	529	1.084	1.640
HzFVB"	12.010	2112.010	3/12.010	150	SN 4220	1.820	900	261	$295180 \mathrm{R} 22,5$	M = 330	2.465	$10 \times$ M $22 \times 1,5$	280,8/335	1.360	hoch	---	---	388	412	530	1.086	1.643
HSFVB	12.010	2112.010	3/12.010	150	SN 4220	2.040	1.300	365	445165 R22,5	Eto	2.505	$10 \times$ M22x1, 5	280,8/335	1.360	mittel	375	417	---	---	578	1.189	1.799
HSFVB	12.010	2112.010	3/12.010	150	SN 4220	2.000	1.200	325	445/65 R22,5	Eto	2.465	$10 \times$ M $22 \times 1,5$	280,8/335	1.360	mittel	375	417	---	---	577	1.187	1.796
HSFVB	12.010	2112.010	3/12.010	150	SN 4220	2.040	1.300	365	445165 R22,5	Eto	2.505	$10 \times 122 \times 1,5$	280,8/335	1.360	hoch	405	447	---	--	584	1.194	1.805
HSFVB	12.010	2112.010	3/12.010	150	SN 4220	2.000	1.200	325	445/65 R22,5	Eto	2.465	$10 \times$ M $22 \times 1,5$	280,8/335	1.360	hoch	405	447	---	---	583	1.192	1.802
HzFVB ${ }^{\prime \prime}$	12.010	2112.010	3/12.010	150	SN 4220	1.820	900	261	$295180 \mathrm{R} 22,5$	M = 330	2.465	$10 \times$ M $22 \times 1,5$	280,8/335	1.360	hoch	405	447	---	---	585	1.196	1.808
HzFVB ${ }^{\prime \prime}$	12.010	2112.010	3/12.010	150	SN 4220	1.850	980	241	295180 R22,5	$M=330$	2.495	$10 \times$ M $22 \times 1,5$	280,8/335	1.360	hoch	405	447	---	---	592	1.210	1.829
HZFVB"	---	2112.010	3/12.010	150	SN 4220	1.820	900	261	295180 R22,5	$M=330$	2.465	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	1.820	hoch	405	447	---	---	---	1.232	1.879
HzFVB ${ }^{\prime \prime}$	---	2112.010	3/12.010	150	SN 4220	1.850	980	241	295180 R22,5	M = 330	2.495	$10 \times$ M $22 \times 1,5$	280,8/335	1.820	hoch	405	447	---	---	---	1.246	1.900

[^0]
4) Weight without wheels and tyess: Weight deviations sare within permitted OlN tolerances for respective production processes.

BPW axle assemblies, VB HD Series.

Axle loads of $14,000 \mathrm{~kg}$ to $20,000 \mathrm{~kg}$.

Type ${ }^{\prime \prime}$	Single axle	Tandem-axle suspension	Triaxle unit	Version)	$\begin{aligned} & \text { S-cam brake } \\ & 0 \times \text { width } \end{aligned}$	$\begin{aligned} & \text { Track (SP) } \\ & (\mathrm{mm}) \end{aligned}$	Spring centre (FM) (mm)	Brake chamber bracket centre (GM) (mm)	Wheelbase (RS) (mm)	Example tyre ${ }^{33}$ (mm)	$M=$ Centre-tocentre distance	Overall width across the tyres	Wheel connection		Ride heigh	(FH) (mm)	Suspension unit weight ${ }^{\text {s }}$ (kg)		
													Wheel stud	$0 \mathrm{H} / \mathrm{K}(\mathrm{mm})$	Loaded ${ }^{\text {d }}$	Unloaded	$\begin{aligned} & \text { Single } \\ & \text { axle } \end{aligned}$	Tademaxle suspension	Tri-axle suspension
hzzv		2114.010	3/14.010	HolHoe	SN 420×200	1.820	900	266	1.360	$12 \mathrm{R20}$	$M=350$	2.496	$10 \times$ M22 $\times 1,5$	280,8/335	430	475		1.527	2.300
HzFVB		2114.010	3/14.010	HDIHDE	SN 420×200	1.820	900	266	1.410	$12 \mathrm{R24}$	M = 360	2.509	$10 \times 122 \times 1,5$	280,8/335	435	480		1.548	2.331
hzFvb	14.010	2114.010	3/14.010	HDIHDE	SN 420×200	1.820	900	266	1.500	12 R 24	M $=360$	2.509	$10 \times 122 \times 1,5$	280,8/335	455	500	814	1.592	2.432
HzMVB		2116.010	3/16.010	HDE	SN 420×200	1.820	900	261	1.360	$12 \mathrm{R20}$	M = 350	2.496	$10 \times 122 \times 1,5$	280,8/335	475	500		1.640	2.469
hzMVB		2116.010	3/16.010	HDE	SN 420×200	1.950	900	281	1.410	$12 \mathrm{R24}$	$M=360$	2.639	$10 \times 122 \times 1,5$	280,8/335	460	495		1.678	2.525
HzMVB		2116.010	3/16.010	HDE	SN 420×200	2.250	1.200	505	1.500	$12 \mathrm{R24}$	M = 360	2.939	$10 \times 122 \times 1,5$	280,8/335	490	530		1.767	2.659
HzMVB	16.010	2116.010	3/16.010	HDE	SN 420×200	1.820	900	261	1.500	$12 \mathrm{R24}$	$\mathrm{M}=360$	2.509	$10 \times 122 \times 1,5$	280,8/335	490	530	864	1.715	2.581
HzMVB	18.010	2118.010	3/18.010	HDE	SN 420×200	1.820	900	261	1.500	$12 \mathrm{R24}$	$M=360$	2.496	$10 \times 122 \times 1,5$	280,8/335	460	480		1.735	2.612
hzMVB	18.010	2118.010	3/18.010	HDE	SN 420×200	1.950	900	281	1.500	$14 \mathrm{R20}$	M = 428	2.776	$10 \times 122 \times 1,5$	280,8/335	460	480		1.757	2.645
HzMVB	18.010	2118.010	3/18.010	HDE	SN 420×200	2.320	1.200	407	1.500	14 R20	$M=428$	3.146	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	460	480	940	1.817	2.735
HzMVB	20.010	2120.010	3/20.010	HDE	SN 420×200	1.950	900	278	1.500	14 R20	$M=428$	2.776	$10 \times \mathrm{M} 24 \times 1,5$	280,8/335	455	480		1.885	2.837
HzMVB	20.010	2120.010	3120.010	HDE	SN 420×200	2.200	1.100	354	1.500	14 R20	$M=428$	3.026	$10 \times \mathrm{M} 24 \times 1,5$	280,8/335	455	480		1.931	2.906
HzMVB	20.010	2120.010	3120.010	HDE	SN 420×200	2.400	1.300	554	1.500	14 R20	$\mathrm{M}=428$	3.226	$10 \times \mathrm{M} 24 \times 1,5$	280,8/335	455	480	1.015	1.967	2.960

BPW axle suspension, W Series.

Axle loads from $20,000 \mathrm{~kg}$ to $40,000 \mathrm{~kg}$.

Type	Axle loads up to $105 \mathrm{~km} / \mathrm{h}$ (kg)	$\begin{aligned} & \text { S-cam brake } \\ & 0 \times \text { width } \end{aligned}$	$\begin{aligned} & \text { Track } \\ & (S P) \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { centre } \\ & (\mathrm{FM}) \\ & (\mathrm{mm}) \end{aligned}$	GM (mm)	Support center (AM) (mm)	High support (axbxh) (mm)	Wheelbase (RS) (mm)	Ride height (FH) (mm)		Wheel connection		Example tyre ${ }^{\text {a }}$	Center-to-center distance (M)	Overall width across then tyres (mm)	Suspension unit weight ${ }^{4}$ (kg)
									Loaded	Unloaded	Wheel stud	๑ H/K (mm)				
HZFW 210010	20.000	SN 420×200	1.820	980	261	660		1.400	213	253	$10 \times 122 \times 1,5$	280,8/335	11 R20	M $=348$	2.482	1.650
HZFW 210010	20.000	SN 420×200	1.820	980	261		$700 \times 1.060 \times 550$	1.400	588	628	$10 \times 122 \times 1,5$	280,8/335	11 R20	M = 348	2.482	1.840
HZFW $21120100^{\text {B }}$	24.000	SN 420×200	1.820	980	261	660		1.400	213	253	$10 \times 122 \times 1,5$	280,8/335	$12 \mathrm{R20}$	$M=350$	2.496	1.710
HZFW 212010 B")	24.000	SN 420×200	1.820	980	260		$700 \times 1.060 \times 600$	1.400	638	678	$10 \times 122 \times 1,5$	280,8/335	12 220	$M=350$	2.496	1.862
HZFW 2112010 ${ }^{\text {2 }}$	24.000	SN 420×200	1.820	980	261	660		1.500	207	253	$10 \times 122 \times 1,5$	280,8/335	$12 \mathrm{R24}$	$M=360$	2.509	1.650
HZFW 2112010 ${ }^{\text {2 }}$	24.000	SN 420×200	1.820	980	261		$700 \times 1.060 \times 600$	1.500	630	675	$10 \times$ M22 $\times 1,5$	280,8/335	$12 \mathrm{R24}$	M = 360	2.509	1.820
HZ(M) W 2/14010-1	28.000	SN 420×200	1.820	900	266	520		1.500	191	262	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	$12 \mathrm{R20}$	M = 350	2.496	2.073
HZ(M) W 2/14010-1	28.000	SN 420×200	1.820	900	266		$800 \times 980 \times 600$	1.500	605	661	$10 \times 122 \times 1,5$	280,8/335	12 R20	$M=350$	2.496	2.262
HZ(M) W 2/14010-1	28.000	SN 420×200	1.920	900	290	520		1.650	191	262	$10 \times 122 \times 1,5$	280,8/335	14 R20	$M=428$	2.746	2.203
HZ(M) W 2/14010-1	28.000	SN 420×200	1.920	900	290		$800 \times 980 \times 600$	1.650	591	662	$10 \times 122 \times 1,5$	280,8/335	14 R20	$M=428$	2.746	2.385
HZMW 2116010	32.000	SN 420×200	1.800	900	241	520		1.550	212	259	$10 \times 122 \times 1,5$	280,8/335	$12 \mathrm{R24}$	$M=350$	2.489	2.385
HZMW 2116010	32.000	SN 420×200	1.800	900	241		$800 \times 980 \times 600$	1.550	610	657	$10 \times 122 \times 1,5$	280,8/335	$12 \mathrm{R24}$	$M=350$	2.489	2.575
HZWW 2116010	32.000	SN 420×200	2.150	1.150	367	770		1.550	210	257	$10 \times 122 \times 1,5$	280,8/335	$12 \mathrm{R24}$	$M=350$	2.839	2.457
HZMW 2116010	32.000	SN 420×200	2.150	1.150	367		$800 \times 1.230 \times 600$	1.550	610	660	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	$12 \mathrm{R24}$	$M=350$	2.839	2.638
HZMW 2118010	36.000	SN 420×200	1.800	900	241	520		1.550	212	259	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	$12 \mathrm{R24}$	$M=350$	2.489	2.422
HZMW 2118010	36.000	SN 420×200	1.800	900	241		$800 \times 980 \times 600$	1.550	612	659	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	$12 \mathrm{R24}$	$M=350$	2.489	2.545
HZMW 2/18010	36.000	SN 420×200	2.150	1.150	367	770		1.550	212	259	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	14 R20	$M=428$	2.976	2.507
HZMW 2118010	36.000	SN 420×200	2.150	1.150	367		$800 \times 1.230 \times 600$	1.550	612	659	$10 \times \mathrm{M} 22 \times 1,5$	280,8/335	14 R20	$M=428$	2.976	2.619
HZMW 2/20010	40.000	SN 420×200	1.900	900	278		$800 \times 980 \times 700$	1.550	712	759	$10 \times \mathrm{M} 24 \times 1,5$	280,8/335	14 R20	$M=428$	2.726	2.737
HZWW 2/20010	40.000	SN 420×200	2.100	1.150	254	770		1.550	212	259	$10 \times \mathrm{M} 24 \times 1,5$	280,8/335	14 R20	$M=428$	2.926	2.577

[^1]we think transport

[^0]:

[^1]: 1) Thesision for or heary-duty use.
 2) Versisin for heayy-duty
 3) Vesion to for rod use.
